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HAVING BLUNT- AND SHARP-LTP COWLS

By Gerald C. Gorton and Murray Dryer

SUMMARY

Two translating spike inlets having blunt- and sharp-lip cowls
were investigated in the Lewls 8- by 6-foot supersonic wind tunnel at
free-stream Mach numbers of 1.5, 1.8, and 2.0 and at angles of attack
from 0° to 10°.

Pressure recoveries on the order of 0.90 were obtained with both
inlets at Mech number 2.0 for cowl-position parameters causing the ob-
lique shock to fall ashead of the cowl lip. On a thrust-minus-drag basis,
the choilce of inlet would depend on the criterion used for inlet-engine
metching as well as the air-flow schedule of the particular engine
considered.

Comparable stable msss-flow ranges were obtained (stable for mass-
flow ratios greater than approx. 0.20) with both inlets when the spike
was positioned to cause the oblique shock to fall within the inlet.
However, for splke positions causing the oblique shock to fell outside
the 1lip et Mach numbers 1.8 and 2.0, the blunt lip generally had the
greater stable range.

INTRODUCTION

A supersonic ailrplane designed to fly over a wide range of Mach
numbers generally requires some form of variable inlet geometry in order
to obtain optimum propulsion-system performance. For nose or nacelle
inlet installations, there are many inherent advantages in using a trans-~
lating splke as the varlable geometry feature. Investigations of the
operating problems of such inlets up to & design Mach number.of 2.0 are
reported in references 1 to 3. These studies have shown that, if cowl-
lip angles are made low to minimize cowl pressure drag, there will either
be excessive Internal contraction or external flow expansion on the spike
for part of the range of operation. The contraction causes additive
drag, and the expansion reduces pressure recovery {(refs. 1 and 2). These
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undesirsble internal flow characteristics can be avoided by using larger
cowl-1ip angles (ref. 3).

This report presents the results of an investigation of translating-
epike inlets designed to avold the flow expansion shead of the cowl lip
but with a compromise 1lip angle which results in some internal contrac-
tion as the splke is translated. Two cowls, consisting of & blunt and a
sharp 1lip, were Iinvestigated.
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The investigation was conducted in the NACA Lewis 8- by 6-foot
supersonic wind tunmnel. The study 1lncluded an evaluetion of the pres-
sure recovery and stabllity of the inlets over a wide range of mass
flows at Mach numbers from 1.5 to 2.0 and angles of attack from o° to
10°. Cowl pressure drags were determined from pressure distributions at

zero angle of attack.

SYMBOLS

The following symbols are used in this report:

A flow area, sq ft

Ay meximum cross-sectional area, 0.534 sq ft

A, inlet capture area (blunt-lip inlet, 0.294 sq ft; sharp-lip
inlet, 0.257 sq ft)

CD drag-coefficient, D/qOAM

D drag, 1b

F thrust with measured total-pressure recovery, 1b

F1 thrust wlth 100 percent total-pressure recovery, 1lb

M Mach number

m mess flow, slugs/seg

M, mass flow through a stream tube defined by inlet capture ares
A slugs/sec

P total pressure,llb/sq ft

P static pressure, lb/sq ft

a dynamic pressure, ypM2/2, 1b/sq ft
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corrected air-flow parameter, lb/sec/sq £t

A

W weight flow, lb/sec

x axial distance from cowl 1ip, In.

a angle of attack, deg

T ratio of specific heats for air, 1.4

total pressure divided by NACA standsrd sea-level statie

pressure

e stream total temperature divided by NACA standard sea-level
static tempersture

ez cowl-position parameter (angle between axis of diffuser and
line joining apex of cone to cowl lip), deg

) theoretical obligue shock angle, deg

Subscripts:

0] free stream

2 diffuser exit

3 air-flow measuring station

APPARATUS AWD PROCEDURE

The inlet model was supported below the tunnel centerline by a strut-
supported sting (fig. 1(a)). Geometric details of the sharp-lip and
blunt-lip cowls are shown in figures 1(b) and (c), respectively. Co-
ordinates of both cowls are referenced to a common axial station (x = 0)
located upstream of the lip. All coordinates downstream of x = 2.688
are identical for both cowls. The blunt-1ip cowl had a larger capture
area, hence less projected frontal area than the sharp-lip cowl.

Details of the centerbody are shown in figure 1(d). The portion of
the centerbody that translates was composed of a 50° included-angle
conical spike which faired into & cylindrical section. This cylindrical
section translated over a fixed cylindrical portion of the centerbody.
The diffuser-area variation of both inlets Tor various positions of the
spike 1s shown in figure 2.
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At any flow condition, a Mach number could be determined at station
3 (fig. 1(a)) by assuming one-dimensional isentropic flow to the choked
exit area. If Mach number were combined with an average measured static
pressure from six orifices at station 3 and the free-stream total tem-
perature, the iniet mass flow could be calculated. The calculated mass
flow and the static pressure from eight orifices at station 2 were then
used to compute Mach number, total pressure, and corrected air-flow
parameter at station 2, the diffuser-dlscharge station.

Cowl pressure drag at zero angle of attack was obtalned from an
integration of the static pressures along the cowl. Static-pressure
orifices were located on the horizontal plane as shown in figures 1(b)
and (ec).

A dynamic static-pressure pickup, located slightly downstream of
station 2, was used in conjunctlon with schlieren apparatus to determine
the onset of pulsing. The start of'pulsing was sufficiently abrupt to
allow the determination of the mass-flow ratio at which pulsing first

occurred.

DISCUSSION OF RESULTS

The measured performance characteristics for the sharp-lip-inlet
model are presented in figures 3 to 5 as a function of mass-flow ratio
for various values of cowl-position parameter 6;. Similar data are
presented in figures 6 to 8 for the blunt-lip inlet. At Mg = 2, both
inlets exhibited maximum pressure recoveries on the order of 90 percent
of free-stream total pressure. These maximum values occurred at cowl-
position parameters, which were less than the theoretical oblique shock
angle = 43°.

Included on these flgures are the cowl pressure drags at zero
angle of attack and the estimated addlitive drags. The additive drags
were approximated by a linear variation between the minimum value pre-
dicted in reference 4 for each critical mass-flow ratio and a value
corresponding to the stagnaetion condition at zero mass-flow ratio.

Inlet stability. - Mass-flow ratios at which each configuration
became unstable are indicated on figures 3 tc 8. For the sharp-lip
inlet at spike positione corresponding to 83 = 43.3° and 42.1%, a region
of instability was encountered at Mgy = 2.0 near the critical mass-flow
ratio (fig. 5). As the mass flow was reduced the flow became stable and
remained so to a very low value of mass-flow ratio.

The stability characteriséiqs are summarized on figure 9 for zero
angle of attack. The mass-flow ratio at which instability was noted is
Plotted as a function of cowl-posltlion paremeter 6. The value of
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cowl-position parameter for which the oblique shock would Intersect the
cowl lip in the absence of internal choking is indicated for each flight

speed (87 =0).

The inlets had comparable regions of stability (stable for mass-—
flow ratios greater than approx. 0.20) at Mach number 1.5 and at higher
Mach numbers for spike projections causing the obligue shock to fall in-
side the cowl 1lip (67> ¢ ). At Mach numbers 1.8 and 2.0, the steble
range decreased as the spike was extended to cause the obligue shock to
fall ahead of the inlet (6, < ® ). The decrease was gradual except for
the sharp-lip inlet at Macﬁ number 2.0 where the previously noted inter-
mittent unstabiliity occurred. At Mach pumbers 1.8 and 2.0 and at 6;< o,
the blunt-1lip inlet generally had the larger staeble mass-flow range.

Critical inlet performance, zero angle of attack. - A summary of
inlet characteristics at ecritical operation is shown in figure 10 for
zero angle of attack. There was a pronounced decrease in the critical
pressure recovery with both inlets at Mach number 2.0 as the spike was
retracted. This effect was less pronounced at lower Msch number. The
reduction was primerily asscciated with the changes in the relative
amount of air that was captured by the inlet and passed through both the
obligque and normal shocks. Changes in the shock structure resulted from
the oblique shock movement caused by spike translation and the normsal
shock movement shead of the inlet because of excesslive internal contrac-
tion {see schlieren photographs of fig. 11).

The cowl pressure-drag coefficients for critical operation were es-
sentlally independent of spike translation. However, as a result of
leading-edge suction, lower cowl-lip angle, and less projected frontal
area, the cowl pressure-drag coefficients for the blunt-1lip inlet were
considerably less than those for the sparp-lip intets. At My = 1.5, for
example, the leading-edge suction was sufficient to constitute a thrust

force on the blunt-lip inlet.

Also shown in figure 10 are curves of cowl pressure plus estimeted
additive drag coefficient. For most conditions, even though the cowl
pressure drag was lower for the blunt-lip inlet, the additive drag was
sufficiently greater to result in higher over-all drags at critical inlet
conditions. However, For forward spike positions (67 < 41.0°) =at
M, = 2.0, the additive drag was reduced to the point where the lower cowl
pressure drag of the blunt lip became a more appreciable part of the over-
all drag. As a result, the over-all drag coefficlent was less for the
blunt-1ip inlet than for the sharp-lip inlet.

Inlet-engine matching. - A thrust-minus-drag comparison of the blunt-
and sharp-lip inlets and the inlet of reference 3 was made by matching
the inlets to several turbojet engines. In order to make the data of
reference 3 compareble with the present investigetion, the friction drag

SRS
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of the model for reference 3 was subtracted from its total drag. The
alr-flow schedules for the engines are shown in figure 12. The eriterion
used for matching was that each inlet would be sized for optimum per-
formance at Mach number 2.0 and that the splke would be translated to
obtain optimum performance at the lower Mach numbers of 1.8 and 1.5.

The effective thrust parameter F i_D used for the comparlson was cal-

culated according to the method of %eference 5, assuming the engines
operate with maximum afterburning in the tropopeuse. The results of
these calculatlons are presented in figure 13.

The blunt-lip iniet was superior on an effective-thrust-parameter
basls at Mach number 2.0 to both the sharp-lip inlet and the inlet of
reference 3. At lower Mach numbers, however, the blunt-lip Inlet was
elther comparable or inferior in performence.

The alr-flow requirements of each engine determined the amount of
spike translation necessary to obtain the most efficlent inlet-engine
matching (fig. 14). Engine C required the largest amount of splke trans-
lation (A9, » 12°), since its required air-flow variation (fig. 12} for
the Mach number range 1.5 to 2.0 was greater than for engines A and B.

It is for such large translations that an inlet with no internael con-
traction may show advantage. An 1llustration of this advantage 1s the
matching of englne C to the three inlets at Mach number 1.5. Only the
inlet of reference 3, which did not have internal contraction, allowed
matching at a high pressure-recovery condition. The sharp-lip and blunt-
lip inlets incorporated enough internal contraction to cause & normsl
shock to position itself ahead of the inlet, thus spilling mass flow

in excess of that which would allow efficlent metching.

It 1s apperent that the cholce of inlet for a glven englne is de-
pendent, not only on the criterion used in matching, but also on the alr-
flow schedule of the particular englne.

SUMMARY OF RESULTS

The following observations were made from an experimental lnvestiga-
tion at Mach numbers 1.5, 1.8, and 2.0 of a blunt-lip and a sharp-lip inlet

equlipped with a translating-spike centerbody:

1. Pressure recoveries on the order of 0.80 were cbtained by both
the sharp-lip and blunt-lip inlet at Mach number 2.0 for cowl-position
parameters less than the theoretical oblique shock angle (92 < 430).

d 2. On a thrust-minus-drag basis, the choice of inlet depends on the

criterion selected for inlet-engine matching as well as the required air-
flow schedule of the particular engine considered.
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3. Both inlets were stable down to mass-flow ratlios of approximately
0.20 when the spike was positioned tc cause the oblique shock to fall
within the inlet (6, > @). However, at Mach numbers 1.8 and 2.0 for spike
positions causing tﬁe oblique shock to fall outside the cowl 1lip (91 < ),
the blunt-lip inlet generally had the larger stable range.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, October 14, 1954
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Station O

(&) Installation in 8- by 6-foot supersonic wind tummel.

Figure 1. - Schematic diagrams of translating-spike inlet model.

Z Mass-flow control plug
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orifices
Nacelle coordinaies
T Aot Statlor | Internal | External
o : radiua, radius,
in. in.
0.188 3.420 3.453
1.438 3.696 3.788
2.588 3.870 4.0%
3.9%8 5.960 4,228
5.188 4.050 4.38]
5.438 4.088 4.505
7.668 4.130 4.808
. . - 8.938 4.150 4,891
10.188 4.101 4.764
[CD-3797 | 10.880 4.060 4,800
11.438 £.020 4.820
12.5° 12.608 3.930 4.889
13.938 5.890 4,520
15.188 3.850 4.950
18.260 3.830
17.500 3.008
1.8.000 3.805
18.750 3.800
20.000 l
21,250

(b) Details of sharp-lip inlet.

Figure 1. - Continued. Schematic dlagrams of transiating-epike inlet medel.
{A1l dimensions in inches.)
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Nacelle-1lip coordinates
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CD-3798

Nacelle coordinates

Station Internal | External
readius radius

1.438 3.677 3.863

2.688 3.870 4.058

Same af sbarp-lip

inlet dimensions

21.250 ]

0 o 0
-013 .QL8 .030
025 .023 040
.038 .029 48
.050 .033 .056
063 037 063
075 040 -069
.100 L044 .080
.125 047 .090
L1580 049 -100
.180 -050 .108

200 113
225 119
.250 123
3z 134
375 AL
438 1148
.50 .150
540 Y .150

{c) Details of blunt-1ip inlet.

Figure 1. - fontinued. Schematic diagrams of translating-spike inlet wodel.

(A1l dimensions in inches.)
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9.70
5.619
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L 4.602— ]
Tan pt.

500 5.083 Rad.
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-
2.40

4

6.742

Flgure 1. - Concluded.

(4) Trenslating-spike cemterbody.

(A1l dimensions in Inches.)

Schematic diagrems of translating-spike inlet model.
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24
ra/
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Axial distence from eowl 1lip, x, iIn.
(1) Blunt-Lip inlet.

Figure 2. - Concludad. Diffuper-aresa varistion.
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Towl-pressure
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(2} Cowl-position parameter, 6 » 87°.

Figwre 5.
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- Performance of sharp-lip inlet at a free-stream Mach nuxber of 2.0.

(n) Cowl-position parameter, @,, 46.9.

Shock angle, 43.0°.
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Total-pressure recovery, PE/PO

Corrected air-flow
paramater,
w+/82
22

Angle of attack,
a, deg

10
Talled symbols
indicate
beginning
of pulsi

as mass flow
is reduced

‘Dmg cosfficient. Cp,

1.0 1.2 .2 8 8 1 1.2
Mase-flow ratio, mx/mg

(e} Cowl-position parameter, ¢,, 44.3°. (a) Com2-pomition parameter, 9,, 43.3°,

-.10

Figure 3. - Contimued. Performance of sherp-1ip inlet et & free-~stream Mach number of
2.0. Shock sngle, 43.0°

NACA - Langiey Fieid, Va.
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Total ~pressure
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®o/Bg
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Corrected alr-flow
parameter,
W

Drag coettflcilent, CD
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a, deg
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HH

1l
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11
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1
t
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(e} Cowl-position paraweter, 8, 42.1°. (£} Cowl-position {g) Cowl-position
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10.89, 39.7°.

Figure 3. - Concluded. Performance of sharp-lip inlet at a free-stream Mach number of 2.0.
Shock angle, 43.0°.
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Figure 4. ~ antinued. Performance of sharp-lip inlet at free-stream Mach number of 1.8. Shock
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Figure 4. - Concluded. Performance of sharp-lip inlet at free-stream Mach number of 1.8.
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